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There are two young boarders in my house. They
condescend to allow me to support them, and occasionally
they allow me to help them with their homework. Help them with
their homework, indeed -- I am racing to keep up with them.
This has led me into some interesting fields of study with
which I had had little experience. I speak, of course, of
that bane of modern parents -- New Math.

When I was in school, geometry was a straight-
forward subject. You learned about angles, parallel lines,
triangles and the like. You learned to make logical deduc-
tions from self-evident propositions, and things were very
orderly.

In the New Math, things are orderly (or appear so)
but there is a little problem about those self-evident
propositions. Consider for example the proposition that
"through a given point, one and only one straight line can
be drawn which will be parallel to a given straight line,"
I was taught, and I accepted uncritically, this proposition
as self-evident. At least as I was in good company --
Aristotle, Descartes, and Immanuel Kant were on my side.
Apparently, we were all wrong, or such is the teaching of the
New Math.

Let us look at Euclid, whose "Fifth Postulate" I

have just quoted. Euclid's works come to us with all of the
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textual problems of the other works of Greek antiquity.
However, there seems to be general agreement that you can
treat Euclid's geometry as an axiomatic system in which
all the theorems may be logically deduced from five
"common notions" and five "self-evident postulates”,
the fifth of which I just quoted. It is, again, "through
a given point, one and only one straight line can be
drawn which will be parallel to a given Straight line".

There are important consequences that depend on this pos-
tulate. For example, it is the basis for the proposition

that the sum of the angles of a triangle is 180°. All of

this always seemed to me to be in accordance with plain common
sense. Anyone can intuitively understand what parallel lines
are, even though it is impossible to follow any given set of
parallels to infinity. It never seemed to me that there was
much to be gained by questioning that the Euclidean system

is a representation of some abstract, intuitively comprehended
space that we live in. In short, without analyzing the matter
in any detail, I understood Euclidean geometry to be as true
and as real as the proposition that 2 plus 2 equals 4. That
was before my son introduced me to New Math. I now know that
I was more than one hundred years behind the times. Now I
tentatively accept the proposition that 4 is the symbol for

a cardinal number corresponding to a set which is the union of
two sets, each of which is represented by the symbol for

another cardinal number, namely 2. I am aware that it requires
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several hundred pages of the Pr

masterpiece of Alfred North Whitehead and Bertrand Russell,

to demonstrate rigorously that 1 plus 1 equals 2. (Of course,
they don't say it that way.) Even more disconcerting is my
newly acquired knowledge that the basic structure of arithmetic,
treated as a comprehensive formal, logical system, can be

shown to be inconsistent, if it is a complete system, or
incomplete, if it is a consistent system.

Who is responsible for these assaults on the
sensibilities of the modern parent? Nicholai Ivanovich
Lobachevsky is one of the principal culprits. But before we
discuss Lobachevsky, let us return to Euclid for a moment.

He recognized that his fifth postulate, the parallel postulate,
occupied a different position from the other postulates. Its
self-evidence was not so plainly self-evident, for the obvious
reason that the definition of "parallel" depends on extending
two lines into infinity and convincing ourselves that they do
not intersect anywhere on their infinite extent. Euclid
therefore attempted to derive his parallel postulate as a
necessary logical consequence of the other postulates. Euclid
failed ; Proclus also failed in the fifth century A.D., and the
great Arab mathematicians failed. By the 17th Century, there
was a large body of so-called proofs of the parallel postulate.
All depended on other propositions which were themselves

unprovable.



—4-

Two 17th Century attempts were more ingenious than
the others. The Italian, Saccheri, and the German, Lambert,
began to understand more about the parallel postulate
problem. Saccheri thought he had solved it by showing that
the opposite assertion to the parallel postulate (i. e., that
there is more than one line that can be drawn through a point
parallel to a given line) leads to unimaginable results. 1In
logic, however, a contradiction to intuitive ideas does not
necessarily indicate a logical contradiction. The parallel
postulate remained unproved.

A step backward was taken in the 18th Century by
Legendre, who reverted to a proof that depended on other
unprovable assertions. All the attempts to show that the
parallel postulate was a necessary consequence of self-
evident propositions failed, because all such attempts were
based upon a preconceived notion that the parallel postulate
really is self-evident and therefore represents a truth which
no sane man can deny.

Notwithstanding the mathematicians' difficulties with
the parallel postulate, Euclidean geometry has played a sig-
nificant role in other areas of human thought. Most importantly,
to Immanuel Kant, Euclidean geometry was a prime example of

synthetic judgments a priori.

In the Critique of Pure Reason, he stated, "geometric

principles are always apodictic, i. e., united with the con-
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sciousness of their necessity...; theorems of this kind cannot

be empirical judgments or conclusions from them." To Kant,

space was an a priori form, and the axioms of geometry (including
the parallel postulate) must be true and must be self-evident,
since they are properties of thought itself. Thus, if the
student of mathematics is to think about space at all, he must
think about space that conforms to Euclid's geometry.

This seems eminently sensible to me, and as nearly
as I can recall, this philosophy was part and parcel of the
~geometry that I studied in school. They don't teach it that
way any more. After nearly two centuries, the geometry of
Nicholai Ivanovich Lobachevsky is now taking over.

Lobachevsky is generally given credit for being
the founder of non-Euclidean geometry. As we shall see
later , the time was ripe in the early 1800's for the new
approach to geometry. Several other mathematicians arrived
at the same conclusions at about the same time. Still,
Lobachevsky was first, when, on February 23, 1826, he delivered
a lecture at the University of Kazan, where he was a young
professor of mathematics. In this lecture, he announced the
solution to the by-now two thousand year old problem of the
parallel postulate. The solution is simply that the parallel
postulate is an arbitrary assumption. Perfectly valid and
consistent geometries may be constructed on the assumption
that there is more than one line, parallel to another (in

the same plane), that can be drawn through a given point.
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Lobachevsky, like many great creative scientists
before and after his time, did not speak to a world ready
and waiting for his revolutionary discoveries. The mag-
nitude of his contributions to mathematics, to logic
and to philosophy was not properly recognized or rewarded
in his lifetime.

Lobachevsky was born in 1792 in Nijny-Novgorod.
His father, of Polish descent, was employed by the Russian
_government as a surveyor. Lobachevsky grew up in poverty
but was able to secure a scholarship at the gymnasium in
Kazan, a trading post on a Volga tributary with a population
of about 25,000. While he was there, Czar Alexander I
promulgated a law changing the gymnasium to a university.
There was some substance to the change. A number of
German professors came to the new universitf and brought
with them the latest works of mathematicians such as Gauss
and Legendre. Lobachevsky was fortunate enough to study
under one professor who had been Gauss's teacher. These
influences led him to abandon a previous interest in medi-
cine and to turn to pure science.

His work both at the gymnasium and the university
levels was brilliant. He did not spend all his time on
studies, however. He was known as a party-goer, and he once

constructed an illegal rocket which was set off in the university
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courtyard. These activities, together with a personal
antipathy towards one of the university officials nearly
cost him his degree. Only a confession before the school's
council and the intervention of his German professors enabled
him to receive his master's degree at the age of 19, in 1811.
Lobachevsky stayed on at Kazan as an instructor, and
~graduate student. His lowly academic rank required him to
teach only the most elementary courses, but this was a blessing
in disguise, since his attention was focused directly on
Euclidean geometry. 1In 1815, he attempted a proof of the parallel
postulate, but soon realized that his demonstration was as
erroneous as those of all his predecessors.
In 1816, he was promoted to associate professor, but
the triumph was short-lived. Alexander I embarked on a
program of repression which included stamping out atheism
in the universities. Lobachevsky's teachers returned to Germany;
and he was forced to assume a number of dull and distasteful
administrative duties, including the preparation of reports on
subversive faculty members. He wrote a book but was unable to get
it published because it used the new-fangled metric system. The
political authorities in Moscow could not approve the publi-
cation of any work having such flagrant connections with

the French Revolution.
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Nonetheless, Lobachevsky continued his work in
~geometry, and on February 23, 1826, gave a report in French

to the physico-mathematical section of the University entitled,

could understand it, and certainly no one in his audience
was aware that they had witnessed a historic turning point
in mathematics. Lobachevsky's subsequent publications on
the subject were greeted with no great interest in Russia.
Although he became rector of the university, he was forced
to resign in 1846 and became an "adjunct superintendent" of
a small school district. His later years were marred by the
loss of a son by tuberculosis, by financial difficulties and
finally by arteriosclerosis and blindness. He died in 1856.
As a final blow, the professor who delivered his eulogy was
charged with being a freethinker and was fired from a position
as professor of mathematics at Kazan.

The Russians do not think so little of Lobachevsky
now. A current Russian treatise on mathematics states:
"Lobachevsky displayed the true grandeur of a genius who
defends his convictions without wavering and does not hide
them from public opinion for fear of misunderstanding and

criticism."
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This is a point well taken. As I said earlier,

the times were ripe for the development of new geometries.
The great German mathematician Gauss, for example, had come,
independently, to the same conclusions as Lobachevsky at about
the same time, but he declined to publish anything for fear
of criticism by the "Boethians", or scholastic philosophers.

Bolyai, a Hungarian geometer, who also arrived at a
non-Euclidean geometry independently of Lobachevsky, did pub-
lish, but his system was not so fully developed as Lobachevsky's.

Even Lobachevsky was not fully aware of the consequences
of his discovery. In 1835, Lobachevsky wrote about his revo-
lutionary conception as follows:

"It is well known that in geometry the theory

of parallels has so far remained incomplete. The

futile efforts from Euclid's time on throughout

two thousand years have compelled me to suspect

that the concepts themselves do not contain the

truth which we have wished to prove, but that it

can only be verified like other physical laws by

experiments, such as astronomical observations.

Convinced, at last, of the truth of my conjecture

and regarding the difficult problem as completely

solved, I put down my arguments in 1826."

Lobachevsky did not construct his geometry as an arbi-
trary exercise in logic. As he stated in 1835, he intended to see
whether his new geometry could be shown, by astronomical
observations, to be a more accurate representation of
space., To this end, he conducted experiments in astronomy,
but they were inconclusive. Within the limits of accuracy
of the instruments then available, it appeared that cosmic space

corresponds to Euclidean geometry. It is interesting to note that

Gauss also conducted such experiments. He had observers on three
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mountain peaks in Germany make measurements of the sum of
the angles formed by the three peaks, which were widely separated
but still visible to each other. These results also were
inconclusive.

it was only much later that the physical meaning
of non-Euclidean geometries became known. Lobachevsky worked out
a nearly complete set of theorems based on his hypothesis that
through a single point in a plane outside a line in the plane,
more than one parallel can be drawn. Based on this groundwork,
later geometers discovered that Lobachevskian geometry is the
simplest way to represent the properties of figures on a
pseudosphere. What is a pseudosphere? It is formed by rotating
a tractrix on its axis, and it looks like the cone-like instrument
that an ear-nose-throat specialist uses to look in your ear.
Lobachevskian.geometry is also a specific account of the geometry
of figures in a circle or on a sphere.

To all of this, you may well say that it is inter-
esting, but not very. 1Its real importance lies first in the fact
that the theory of relativity employs non-Euclidean geometry
to represent space. Lobachevsky's discoveries formed the
basis for the work of a German geometer, Riemann, and there is
now general agreement that Riemannian_geometry best describes
cosmic space as it is known to us by the measurement of light
from heavenly bodies. Euclidean geometry remains perfectly
valid and useful, of course, provided that it is applied on
a non-cosmic scale. It also can be thought of as a special

case in a more general concept of geometry.
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There are still other practical consequences of
Lobachevsky's discoveries. These include the development of
geometries in more than three dimensions. If you are like me,
you thought of the fourth dimension as strictly a science fiction
concept. In the New Math, however, this is not so. Four
dimensional (and, for that matter, n-dimensional) geometries turn
out to be very useful in describing the reaction of the human
eye to the colors that make up light and in describing phase
relationships in physical chemistry.

We see that there can be truth without parallel, that
is, without the Euclidean concept of parallel lines extended to
infinity. For this reason alone, the New Math is the only math
that can be taught by the modern school. But we spoke earlier of
the part that Euclidean geometry has played in the development of
other areas of thought. We spoke, for example, of Immanuel Kant
and the central position that Euclidean geometry occupies in
his philosophical work. After Lobachevsky, new approaches to
logic and to philosophy were necessary, and it is here that the
real significance of Lobachevsky's discoveries becomes apparent.
This has been pointed out by many writers, including Bertrand
Russell, but never so clearly as by Richard Von Mises, an Austrian
born mathematician who came to this country after World War I. The
discussion that follows is based on his writings, which show how
the development of non-Euclidean geometry has had effects that go
far beyond conventional mathematics.

The concept that there can be different geometries
based on different sets of axioms compelled mathematicians
to focus their attention more closely on the axiomatic system

of thought itself. Those of us who learned Euclidean geometry

in school probably regard axiomatics as a straightforward
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system. You are given certain basic assumptions, or axioms,
and you deduce theorems from them by the use of logical
thought processes. However, as Lobachevsky showed, the process
of selecting axioms can cause two thousand years of confusion,
when the axioms are not precisely selected to begin with.
Lobachevsky spoke of selecting new axioms that could be tested
by physical experiment. From the standpoint of logic, his
more important contribution was that he showed a clear example
of the concept of independence, that two (or more) geometries
can be conceived when you realize that the parallel postulate
is independent of the other basic postulates (or axioms) of
Euclid.

Subsequent mathematicians and logicians have shown
that there are like difficulties with the other "self-evident"
axioms that we learned in school, e.g., the axiom that the
whole is greater than any of its parts, or that every quantity
is equal to itself. These difficulties arise from our failure
to make truly precise analyses of the meaning of the words we
use. Does it matter from a practical standpoint? Well, no,
most of the time it does not, but we shall see that it can
matter even to those of us who are not nuclear physicists or
mathematicians.

Parenthetically, it should be pointed out that the
physical sciences were also turned in new directions in the
19th century. Ernst Mach, in 1883, showed that Newton's

mechanics, as expressed by Newton, were based on a somewhat
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confused combination of axioms and definitions, so that
the use of conventional deductive logic may lead to
erroneous conclusions.

To illustrate, Newton defines force as something
that changes the velocity of a body; he then enunciates the
law that velocities are changed by forces. Mach showed us
that Newton, had he the benefit of New Math, would have said
something like "the circumstances in which a body is at a given
time determine its instantaneous change of velocity, (i. e.
acceleration) and for different bodies under the same circum-
stances, their observed accelerations differ by a numerical
factor which is a constant for each such body (i. e. mass)."

Mach did not, in his reforﬁed version of Newton,
make new discoveries about the physical sciences. Rather, he
expressed Newton's ideas far more clearly, with one result
being that we appreciate Newton's genius even more.

In 1889, another German mathematician, David Hilbert,
re-created geometry based on a logically sound structure of
axioms. This approach to geometry, a refinement of the dis-
coveries of Lobachevsky, dealt a death blow to Immanuel Kant's
belief that Euclid's vision of space represented a priori truth.

Hilbert and the axiomaticists have concerned them-
selves with two general principles, namely consistency and
independence. We say that a group of axioms are consistent if
it is not possible to deduce from them both one statement and its
opposite. How then do we tell if a group of axioms are independent?

Assume one consistent group of axioms, a second group and a
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third group. The first and second are assumed to be
consistent with each other. If the third group may be
substituted for the second, with the result that the first
and third are consistent, then the second and third are
independent of the first. You will recall that Lobachevsky's
discovery may be expressed as the discovery that the parallel
postulate is independent of Euclid's other postulates, or
axioms.

Let my audience not think that we have now arrived,
through the ingenuity of New Math, at a triumphant victory
over the forces of darkness and superstition. On the contrary,
the axiomatic approach to mathematics and logic has led to new
difficulties. It developed, after Hilbert's work, that the
consistency of geometry can only be demonstrated by an appeal
to the consistency of arithmetic.

You answer, "Well, of course, arithmetic is consistent."
I point out that‘it has never been proven to be consistent, and
that one of our prominent modern mathematicians, Kurt GBdel,
has proven to the satisfaction of his colleagues that arith-
metic cannot be proven consistent. We need not despair, however,
because arithmetic and geometry do correspond with most of
our real world as we are able to observe and measure it, so that
for most purposes we may presume that our more perfectly
axiomatized geometries and arithmetics are consistent.

"For most purposes" is of course not good enough for
anyone who falls into the grips of New Math. What about the

aspects of arithmetic and geometry that are not consistent?
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This question leads us to an even more fundamental one--—
namely the question of the rigor of our logic. Modern
studies of mathematics, especially the studies triggered
by Lobachevsky's discoveries, have led to far-reaching
developments in the study of logic. We can no longer speak
with certainty about eternally valid truths of logical method.
Logic itself is a developing science; the axiomatization of
arithmetic and geometry is valid with respect to today's logic.
Tomorrow may require different logical technigues, which could
result in new approaches to the axiomatic formulation of
arithmetic and geometry and of physics, chemistry and other
sciences as well.

The new approaches to logic come to us from a
~group of mathematicians and philosophers known as the "Vienna
Circle", whose most prominent member was Ludwig Wittgenstein.
Wittgenstein tells us that meaningful statements may be divided
into two groups: The first group consists of statements that
may be tested by experience. The second group consists of
statements that are either true or false because of the way they
are worded. It is the second group that interests logicians.
If a statement of this second kind is true, it is referred
to as "tautological"; if it is false, it is "contradictory".
At this point, please try to forget your ordinary understanding
of the word "tautology". Logicians use it differently than
normal people.

Let us look at examples of tautologies, as the word

is now used. In arithmetic, we may say that the sum of two



-16-
natural numbers is a natural number. By the logical rules
established for arithmetic, this is true, and tautological,
independent of experience. The statement, "water freezes at
32° Fahrenheit" is of course dependent on experience and is
neither tautological nor contradictory, as we are using those
words.

Because of our use of the concept of tautological
statements, it may be argued that we have merely returned
to Immanuel Kant's conception of a priori synthetic statements.
This is not so. Tautologies are not a priori because they do
not come from super-empirical sources, and they are not syn-
thetic, because in and of themselves, they say nothing about
reality. They represent only reformulations of arbitrary
rules that have been fixed without any necessary connection to
experience. Our previous example of a tautology referred to
natural numbers, but this is a concept that can be developed
independent of experience. Natural numbers are useful because
they are related to experience, but for this purpose, they may
be considered as a convenient example of arbitrary abstractions.

The objection may then be raised that we are recreating
Kant's analytic judgments, that is, those concepts that exist
independently and may be discovered through pure thought. How-
ever, by definition, our tautologies are composed by arbitrary
rules acting upon arbitrary assumptions. This is far removed

from Kant's philosophical structure.
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There is obviously a limit to how far we wish to go
in emphasizing the arbitrariness of a logical system. It is
the thesis of most New Mathematicians that mathematics is
essentially a chain of tautologies. However, if we lose all
connection with experienced reality, we may have a beautiful
logical system, but one that is of no use to anyone. Fortu-
nately, the Vienna Circle and other modern logicians concen-
trate their efforts on logical systems that do have some
relationship to reality. . The use of the plural, "systems",
is deliberate here. There is no general agreement today that
any one system of logic is solely and completely valid
for human thought.

What is most significant about the new approaches
to logic is the mathematical treatment that is given, first
to elementary relationships such as "and", "or", "if" and "not"
and then to far more complex structures. This has led to the
discovery and expression of formal laws, which you may hear
referred to as "truth-function theory" or as "propositional
calculus". We have thus moved from the logic of mathematics,
which we have been speaking of previously, to the mathematics
of logic, a new and separate mathematical discipline.

The mathematics of logic has moved us far beyond the
logic which is familiar to most of us. Immanuel Kant recog-
nized that Aristotle's logic had never been improved on for
more than two thousand years. It has taken great strides since
Kant's time, however, and modern approaches to logic have added

a great deal to our store of knowledge about mathematics and

science.
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Progress in the area of mathematical logic or
"logistic" has involved not only those areas of higher
mathematics that are accessible to the specialist, but also
those that become the concern of the parent of students of
New Math. 1In fact, many of the great advances in logistic
have involved such mundane areas as arithmetic. Bertrand
Russell and Alfred North Whitehead created their Principia

Mathematica in 1910 as an attempt to "reduce all mathematical

concepts to the simplest logical operations". 1In doing so, they
have shown that arithmetic is not so clear and simple as we once
imagined it. They have also shown us a glimpse of what some
refer to as a "world free of metaphysics." You may have, as

I do, a fondness for metaphysics, but no matter how much you
care for the subject, you cannot help being offended by the
activities of those who abuse metaphysics and want to extend

it to areas where it clearly does not belong. To this extent,

a "world free of metaphysics" simply means a world where science
takes its proper place while metaphysics is concerned with
values that are not of this world.

There are some modern logicians who carry the concept
of anti-metaphysics perhaps too far. There is an offshoot of
the Vienna Circle known as the "Polish School", whose members
include TLukasiewicz, Ajdukiewicz, Kotarbinski, Tarski and others.
They say that all truth, all knowledge is possible through an
extension of the new techniques of logistic - that is, math-
ematical logic. They may be right, but they have not con-

vinced most of their colleagues. I mentioned Lukasiewicz as
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a member of the Polish School. He has attained a certain
amount of contemporary fame as the creator of a new form of
symbolic logic which has been adapted by the creators of a
parlor game, available at any book store, known as WFF N' PROOF.
If you have never heard of it, ask any teenager who has had a
background in New Math. The introductory exercise in this
so-called game is as follows:
"Given the following three statements as premises:
(1) 1If Bill takes the bus, then Bill misses his
appointment, if the bus is late.
(2) Bill shouldn't go home, if (a) Bill misses
his appointment, and (b) Bill feels downcast.
(3) If Bill doesn't get the job, then (a) Bill
feels downcast and (b) Bill should go home.
is it valid to conclude that if Bill takes the
bus, then Bill does get the job, if the bus is late?"
The problem posed has a clear and simple solution,
but in order to solve it, it helps to become an expert in
manipulating the symbolic logic of Lukasiewicz. You may again
say, as I am sure you have said many times this evening, "Well,
all this may be very interesting, but so what?" If you're a
lawyer, I'll tell you so what. All the problems in this innocent
parlor game of WFF N' PROOF are derived from the more abstruse
sections of the United States Internal Revenue Code of 1954, as
amended. All lawyers today are tax lawyers to some extent. It
may be the ultimate Polish joke to point out that all lawyers

are therefore devotees of Polish logic.
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Whether you are a logician, a mathematician, a
lawyer, oxr simply the parent of a student of New Math, you
cannot help wondering where all this will lead us. We
have seen mathematics nearly re-created from new fundamentals;
we have seen logic stirred from two thousand years of lethargy.
Are there any fundamental concepts or foundations of mathe-
matics where we can finally rest? It is this unanswerable
question that helps make New Math so interesting.

We have seen, that, thanks to Nicholai Ivanovich
Lobachevsky and his successors, mathematics is now a tautologi-
cal structure, independent of experience. It has foundations
and basic assumptions which are debatable like those of
any other science.

When we say that the foundations of mathematics
are debatable, you may be inclined to say that such self-
evident, and fundamental, propositions as two times two equals
four are not debatable. This may be true, but bear in
mind Lobachevsky's discovery that Euclidean geometry, which
at one time was considered to be as self-evident as simple
arithmetic, is actually a special case of a much more
~general geometry, which has itself been shown to be of great
utility in describing reality. We may conclude then that

self-evidence is not one of the foundations of mathematics.



-21-

Another suggested foundation is intuition, which
is a more subtle and complex concept than self-evidence.

The intuitionist school recognizes that customary patterns of
thought, based on experience, dictate the simple ideas of
mathematics. The intuitionist believes that the mathematician
looks at and operates on these simple ideas, and through

the mental process called intuition, recognizes which concepts
have the properties of being clear and indubitable. The
mathematics resulting from this foundation can never be con-
sidered a closed system, since it is always subject to being
revised or added to as our experience of the world grows.

This is, of course, a far cry from Kantian and scholastic views
of mathematics, which hold that its basic concepts are "once
and for all impressed upon the human race by the properties

of its reasoning power”.

Intuitionism is not just idle speculation about the
foundations of mathematics. It has had a considerable effect
on logistic, and in particular on the "rule of the excluded
middle". Either "it is Monday night™ or "it is not Monday
night". These two statements admit of no third possibilities,
or so I was always taught. The intuitionists, however, true
to the tenets of New Math, have overturnhed conventional wisdom.
In mathematical problems dealing with infinite sets of numbers,
our old friend, the rule of the excluded middle is no longer
applicable. This has led to the creation of still another new
form of logistic, known as "problem calculus". We previously

spoke of "propositional calculus" in which statements were
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reduced to symbols and operated upon by mathematical techniques.
In problem calculus, problems are reduced to symbols, and the
question is no longer whether a statement is true or not but
rather whether a problem is solvable or not. In the logistic
of propositional calculus, we could always assume that the
truth or falsity of a statement about experience could be
demonstrated. In our new logistic, problem calculus, it may
be impossible to determine whether a problem can be solved.
This logistic exists, therefore, without a rule of the
excluded middle. This discovery is as far-reaching as the
discovery that Euclid's parallel axiom is logically independent
of the other axioms of geometry. For example, it put into
serious doubt all those proofs of mathematics, some of them
relied upon for hundreds of years, known as "indirect proofs".
The intuitionists have not taken over, despite the
achievements sketched above. The school known as "formalism"
objects, not unnaturally, to reliance upon a concept so ill-
defined as "intuition". Hilbert, the leader of the formalistic
school ; has proposed that we restrict our use of the name
"mathematics" to those mechanical processes in which symbolically
represented axioms are operated on by arbitrary rules. The
meaning and interpretation of the symbols in guestion are then
reserved to "metamathematics", which must be used to prove the
consistency of the system known as mathematics. Unfortunately
for Hilbert, the development of a consistency proof requires the

use of the rule of the excluded middle. What Hilbert and his
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followers were attempting was the construction of a proof,
by finite means, that would support a structure that
includes conceptions of the infinite. At present, these
attempts have failed. GUdel has shown that one cannot prove
the consistency of a formal system without going beyond
the very same formal elements of the system. The formalists
have therefore been unable to establish what they consider
most essential to their approach, its consistency. The
intuitionists are not bothered by this; the formalists still
are.

Meanwhile, there is also a school of logicism,
represented by Frege, Peano, Russell and Whitehead, that is
attempting to reduce all of the tautological relationships
of mathematics to basic logical concepts, with no necessary
relation to the world of reality. The logicists have achieved
considerable success and have made great strides in pointing
out the logical mistakes of other mathematicians. However, they
have not succeeded in showing us how an infallible logical
system can be related to the world of experience.

We keep returning to this question of the relation
of mathematics to experience. The practitioner of New Math
may construct any number of tautological systems, but our
interest in them rests ultimately on the extent to which
they correspond with some reality that we know through exper-
ience.

The reality that we "know" today is a world far

different from the world as it was known fifty, one hundred,
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or one hundred fifty years ago. This is the reason why we
have New Math and why we parents cannot answer the simple
questions of a seventh grader.

It is really no comfort to us at all, but we may
close by contemplating the words of Albert Einstein:
"As far as the laws of mathematics refer to reality , they
are not certain; and as far as they are certain, they do

not refer to reality."”



